The Crystal Structure of Y₅Si₃ and Y₅Ge₃

By Erwin Parthé*

Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

(Received 21 December 1959)

The crystal structures of Y_5Si_3 and Y_5Ge_3 have been studied by means of rotation and Debye-Scherrer powder photographs. Both compounds crystallize in the $D8_8$ structure type. Y_5Si_3 has the lattice constants $a = 8.40_3$ and $c = 6.30_3$ Å. The dimensions of Y_5Ge_3 are $a = 8.47_1$ and $c = 6.35_0$ Å. Both compounds have an unusually large c/a ratio.

Introduction

In the course of a study of the compounds of yttrium, the systems Y-Si and Y-Ge have been investigated. In the case of Y-Si the existence of two compounds was already established. YSi₂ has been mentioned by Brauer & Haag (1952) as a possible orthorhombic variation of the ThSi₂ structure. The same compound was the object of a recent complete structure determination which proved the former suggestion (Perri, Binder & Post, 1959). The structure of YSi has been described as belonging to the CrB type (Parthé, 1959). There remained the pattern of another phase in the middle region whose structure is discussed in this paper. An isotypic structure also exists in the system Y-Ge. This is thus far the first yttrium germanide to be reported in the literature. Other phases present in this system will be the object of later publications.

Sample preparation

Yttrium pieces and silicon lumps have been arc melted under helium. The buttons were turned around and remelted three times. The composition of the samples were checked by chemical analysis. The same procedure was repeated for the preparation of the yttrium germanides.

Y₅Si₃

It was possible to isolate a single crystal from a button of yttrium silicide with 37.6 at.% Si. A rotation photograph of this crystal could be indexed with a hexagonal unit cell and the lattice constants

$$a = 8.40_3$$
, $c = 6.30_3$ Å, $c/a = 0.750$.

The density of the compound was determined experimentally to 4.36 g.cm.⁻³. Assuming the composition Y_5Si_3 and two formula units per unit cell the theoretical density can be calculated to 4.54 g.cm.⁻³.

The systematic extinctions lead to the possible

space groups $D_{6h}^3 - P6_3/mcm$, $D_{3h}^2 - P\overline{6}c2$, $C_{6v}^3 - P6_3cm$, $D_{3d}^4 - P\overline{3}c1$ and $C_{3v}^3 - P3c1$. Assuming space group $D_{6b}^3 - P_{63}/mcm$ the yttrium atoms have been placed in 4d and $6g_1$ with $x_1 = 0.25$ and the silicon atoms in $6g_{II}$ with $x_{II} = 0.61$. The agreement between calculated and observed intensities may be studied in Table 1. A structure type with these atomic positions is already known in the literature as $D8_8$ or Mn_5Si_3 type. Only recently another silicide with the $D8_8$ structure has been studied. During the course of that study Weissenberg photographs of a Ti₅Si₃ single crystal were used to calculate the two free parameters more accurately (Nowotny, Auer-Welsbach, Bruss & Kohl, 1959). The free parameters found for Y_5Si_3 are slightly different from those reported for Ti₅Si₃. It can be reasoned that with $x_1 = 0.25$ for yttrium and $x_{11} = 0.61$ for silicon a better spatial arrangement will be achieved. This fact is not very surprising if we also consider that Ti₅Si₃ and Y₅Si₃ have quite different c/a ratios. The c/a ratio of Ti₅Si₃, 0.687, is about 10% smaller than that given for Y₅Si₃. In distinction to Ti₅Si₃ no smear lines have been observed between the equator and the first layer line.

By hot extraction technique the oxygen content of the Y_5Si_3 sample was determined to be 1.3 at.%. It was not possible to synthesize a purer Y_5Si_3 since the only available yttrium metal contained oxygen as impurity. In the neighboring silicon systems with transition metals the Mn₅Si₃ structure type occurs as a ternary phase stabilized by a small amount of oxygen, carbon, etc. These are the so-called Nowotny phases (Parthé, 1957). It has been shown that the Nowotny phase shifts closer to the binary system Me-Si if the group number of the metal decreases and in the case of Ti₅Si₃ it is already a pure binary phase. It is expected from this evidence, that pure oxygen free Y_5Si_3 crystallizes in the binary $D8_8$ structure, which is also able to provide some accommodations for a few oxygen atoms. There are octahedral holes in the $D8_8$ structure at 0, 0, 0 and 0, 0, $\frac{1}{2}$ which are large enough to be occupied by oxygen atoms (Aronsson, 1958). Since the scattering factor of oxygen is so small in comparison to yttrium or silicon the oxygen has not been considered in the intensity calculation.

^{*} Present address: University of Pennsylvania, Metallurgy Department Philadelphia, U.S.A.

Table 1. Intensity calculation for Y_5Si_3 with $D8_8$ structure

(Cr $K\alpha$ radiation)										
hkil	d (Å)	$1000.\sin^2 \theta_c$	$1000.\sin^2 \theta_o$	I_c	Io					
1010	7.27	24.78		0.88	_					
0001		33.03	—	0						
$11\overline{2}0$	4.199	74.34	74.1	2.22	vvw					
$20\overline{2}0$	3.636	99.12	99.6	11.48	m					
1121	3.495	107.37	107.6	13.90	m					
0002	3.149	132.12	132.0	3.84	vw					
1012	2.890	156.90	156.5	16.07	mst					
2130	2.748	173.40	173.9	17.27	mst					
1122	2.519	200.40	206.1	30.85	vvst					
2131	2.019	200.49 J	009.9	30·77 J						
3030 9059	2-424	223.02	223.3	0.40	msi					
2022	2.100	297.36		0.40	_					
	2.071	305.58	_	0.00						
3140	2.017	$322 \cdot 14$		0.23°	<u> </u>					
$22\overline{4}1$	1.992	330.39	_	0.38						
$30\overline{3}2$	1.921	355.14	_	0.18						
3141	1.921	355.17	—	0.96						
$11\overline{2}3$	1.878	371.61	370.6	2.04	vvw					
$40\overline{4}0$	1.818	396.48	3 96·0	1.69	vvw					
$22\overline{4}2$	1.747	429.48	429.6	10.25	m					
3142	1.699	454.26	454.7	4.83	vw					
2133	1.669	470.73	470.3	10.22	m					
3250	1.669	470·82 J	2000	1.98						
3251	1.6127	503.85	504.4	7.17	mw					
4150	1.5872	520.38	520.9	0.17	mw					
4079	1.575	528.60	528.8	11.16	m					
1014	1.5392	553.26		0.02						
4151	1.5392	553.41		0.05	_					
$22\overline{4}3$	1.4844	594.63		0.20						
$11\overline{2}4$	1.474	$602 \cdot 82$		0.22						
$32\overline{5}2$	1.474	$602 \cdot 94$		0.42						
$31\overline{4}3$	1.455	619.41		0.57						
$50\overline{5}0$	1.453	619.50		0.33						
2024	1.445	627.60	627.7	1.76	vvw					
4152	1.418	652.50	652-8	2.27	vvw					
3360	1.399	609.00	607.0	0.48						
4200	1.3740	701.04	097-0 to	6.91	m d					
2134	1.3662	702.09	703.4	3.99	m, u					
4261	1.343	726.87		0.79						
3034	1.320	751.50		10.60						
$50\overline{5}2$	1.319	751.62	751.5	6.97	mst, d					
$32\overline{5}3$	1.3066	768·09 ∖́	767.0	6·88 ∖́	m d					
$51\overline{6}0$	1.3065	768·18 ∫	101.9	3.61 ∫	m, a					
$33\overline{6}2$	1.279	801·18)	801.6	7∙08 ∖	mst d					
$51\overline{6}1$	1.278	801·21 J	001 0	8.16 ∫	που, ω					
4153	1.266	817.65	—	0.06	—					
2244	1.2596	825.84	—	0.63						
4262	1.2594	825.96		0.34	_					
3144	1.2413	800.02	_	0.56						
1195	1.2120	900.09	—	1.99)						
5162	1.2001	900.30	899.3	0.03	vvw					
4370	1.1951	916.86	_	0.05						
4044	1.1903	924.96	924.0	4.29	vw, d					
$43\overline{7}1$	1.1746	949.89		0.87	`					
3363	1.1645	966· 33)	965.5	11.74	mot and					
$52\overline{7}0$	1.1645	966·42 ∫	200.0	3∙84 ∫	moi, va					
$42\overline{6}3$	1.14994	991.11	991·8	4.66	w, vd					

Y_5Ge_3

$$a = 8.47_1, c = 6.35_0 \text{ A}, c/a = 0.749$$
.

A powder photograph of yttrium germanide with 37.4 at.% Ge showed a X-ray pattern similar to Y_5Si_3 . The hexagonal cell has the dimensions

With two formula units Y_5 Ge₃ per unit cell the theoretical density can be calculated as 5.57 g.cm.⁻³, while the experimental value amounts to 5.40 g.cm.⁻³.

Table 2. Intensity calculation for Y_5 Ge₃ with D8₈ structure

(Cr $K\alpha$ radiation)											
hkil		d (Å)	10	$00.\sin^2 \theta_c$	$1000.\sin^2 \theta_o$, I _c	Io				
1010		7.330		$24 \cdot 3832$		4.99					
0001		<u> </u>		32.54065							
1120 2020		4·2318 3·6657		73·15 97·53	98.1	0.06	2:212/1				
$11\overline{2}1$		3.5214		105.69		0.24					
0002		3.1731		130.16	129.6	12.01	mw				
$10\overline{1}2$		2.9121		154.54	153.9	12.00	mw				
2130 9191		2.7710		203.22	171.3	18.34) m				
$11\overline{2}2$		2.5389		203.31	203.5	54.05	vvst, d				
$30\overline{3}0$		2.4438		$219 \cdot 45$	219.7	29.89	m				
$20\overline{2}2$		2.3991		227.69	228.4	3.23	vvw				
2240 2132		2·1164 2·0872		292.59		0.27					
$31\overline{4}0$		2.0333		317.00	317.6	1.49	vvvw				
$22\overline{4}1$		2.0077		$325 \cdot 13$	325.7	2.45	vvw				
$31\overline{4}1$		1.9364		$\frac{349 \cdot 52}{349 \cdot 32}$	349.6	6.15	$\} vw$				
3032		1.8053		349.61 J		0.44	J				
4040		1.8329		390.13	390.9	1.00	111111				
$22\overline{4}2$		1.7607		422.75	422.6	12.13	w				
$31\overline{4}2$		1.7120		447.14	447.7	2.03	vvw				
3250		1.6819		463.28	463 ·4	16.24	} m				
2133 3251		1.6258		495.82	496.5	7.92) 10				
4150		1.5998		512.05	512.2	4.73)				
$40\overline{4}2$		1.5871		520.29	to	8.96	$\left. \right\} w, d$				
0004		1.5865		520.65 J	520.9	7.38	J				
4151		1.0433		545.03		0.33					
		1.4960		585.45	585.9	1.19	vvvw				
$32\overline{5}2$		1.4860		593-44	593.7	2.44)				
$11\overline{2}4$		1.4856		593·80 j	0001	0.005	j vou				
5050 3173		1.4002		609.84	610.8	3.35	$\}$ vw				
$20\overline{2}4$		1.4561		618.18	_	0.59	,				
$41\overline{5}2$		1.4285		$642 \cdot 21$	$642 \cdot 8$	3.72	vw				
3360		1.4109		658·34		0.66	、 —				
4260 3361		1.3854		690.88	683·2	6·81 5·51					
$21\overline{3}4$		1.3769		691.33	691.1	6.43	<i>w, u</i>				
$42\overline{6}1$		1.3536		$715 \cdot 27$	716.0	4.68	, vw				
5052		1.3310		739.74	739.3	14.67	m, d				
3034 5160		1.3307		755.88		16.48	}				
3253		1.3169		756.14	756.7	7.47	$\begin{cases} w, d \end{cases}$				
51 <u>6</u> 1		1.2893		788·42 (788.9	9.83	{ an				
3362		1.2892		788.50 ∫	100 0	5.98	f w				
4153 4262		1.2760 1.2697		812.89		0.35) —				
2244		1.2694		813.24	813.3	0.28	$\left. \right\} vvvw$				
$31\overline{4}4$		1.25089		837.63	837.2	1.81	vvvw				
6060		1.22190		877.79	<u> </u>	0.51	、 —				
5162 1125		1.21027		886.67		0.18	} _				
4370		1.20535		902.18		0.26)				
4044		1.19956		910.78	909.6	2.34	vvvw				
4371		1.18410		934.72	$935 \cdot 1$	4.49	vw				
5270 2262		1.17395		950.94	950.9	6·06	mw, d				
6000		1 1 20 27	α,	974·4	α , 974.4	13.14) (mm				
4263	α_1	1.15977	α_2	977.7	$\alpha_2 977.6 $	16.86	$\begin{cases} mw \\ w \end{cases}$				
$52\overline{7}1$	α.	1.15509	α_1	982.28	j.	36-16) Ì				
	~1		α_2	985.62		55 10	1				
a		1 1 5 / 22	α.	982.73		_	msi, d				
3254	α_1	1.15483	α_2	986.07		3.68	}				
			-		> 986∙0 (<i>m</i> , <i>d</i>				
$21\overline{3}5$	α_1	1.15468	α_1	982.99	- }	63.27	1				
	-		α_2	000.04-	J)				

.

The space group $D_{6h}^3 - P6_3/mcm$ has again been assumed. The yttrium and germanium atoms have been placed in the same positions as in Y₅Si₃. The agreement between calculated and observed intensities as seen in Table 2 is very good. Thus Y₅Ge₃ also crystallizes in the D8₈ structure and like Y₅Si₃ has the unusually large c/a ratio.

Discussion

As mentioned above, the $D8_8$ structure occurs in silicides and germanides with transition metals of the fourth to the sixth group of the periodic system. The metal atoms in the 4d and 6g positions are not touching each other in these compounds. In Y_5Si_3 on the other hand, the distance between 4d and $6g_1$ has been calculated to be 3.57 Å, while the value of 3.62 Å can be taken from tables for the diameter of a yttrium atom. This compression of the *a* axis is the reason for the unusually large c/a ratio in Y_5Si_3 and Y_5Ge_3 which has not been observed by other compounds with $D8_8$ structure. It will be shown in another paper that in the case of Y_5Si_3 and Y_5Ge_3 an increased transfer of electrons of the $6g_1$ atoms to the 4d position should be observed. This increased electron transfer causes the shortened distance between the atoms in the 4d position and the $6g_{I}$ position of the $D8_{8}$ structure, and hence the unusually high c/a ratio.

The author wishes to thank Prof. John T. Norton for his stimulating interest. He also would like to express his gratitude to Dr M. V. Nevitt at Argonne National Laboratory for the arc melting of the samples. He further acknowledges the contributions of Mr W. Holbrook to the experimental portion of the program. This investigation was sponsored by the Atomic Energy Commission under contract No. AT(30-1)-981. This support is gratefully acknowledged.

Literature

- ARONSSON, B. (1958). Acta Chem. Scand. 12, 31.
- BRAUER, G. & HAAG, H. (1952). Z. Anorg. Chem. 267, 198.
- NOWOTNY, H., AUER-WELSBACH, H., BRUSS, J. & KOHL, A. (1959). Mh. Chem. 90, 15.
- PERRI, J. A., BINDER, I. & POST, B. (1959). J. Phys. Chem. 63, 616.
- PARTHÉ, E. (1957). Powder Metall. Bull. 8, 23.—Errata and additions (1958). Powder Metall. Bull. 8, 70.
- PARTHÉ, E. (1959). Acta Cryst. 12, 559.

Acta Cryst. (1960). 13, 871

Experimentelle Untersuchungen zur Brechungskorrektur bei Präzisionsgitterkonstantenmessungen an Pulverpräparaten

VON MANFRED WILKENS

Institut für Metallphysik am Max-Planck-Institut für Metallforschung, Stuttgart, Deutschland

(Eingegangen am 15. Januar 1960)

The displacements through refraction of the diffraction maxima of gold, relative to those of aluminium, were measured for three radiations (Cu, Co and Cr K). In the back-reflexion region only the wavelength change in the interior of the powder grains is important. In the low- and medium-angle regions the effect due to the change in direction of the ray on entering the grain is also detectable, and depends strongly on the grain size and shape. All these findings are in accordance with theory.

Einleitung

In einer vorangegangenen Mitteilung wurde über statistische Abschätzungen bezüglich der Brechungskorrektur (im Folgenden kurz BK genannt) bei Präzisionsgitterkonstantenmessungen an Pulverpräparaten berichtet, Wilkens (1960a). Danach liegt die BK im allgemeinen zwischen zwei Grenzen, die aus idealisierten Präparatmodellen abgeleitet wurden.

1) Bei sehr kleinen Teilchen mit Linearabmessungen $L < 1/\mu (\mu = \text{Absorptionskoeffizient})$ braucht nur die Veränderung der Wellenlänge im Kristallinneren berücksichtigt zu werden, unabhängig von der Gestalt der Teilchen.

$$d_{\text{korrigiert}} = d_{\text{gemessen}} \left(1 + \frac{\Delta d}{d} \bigg|_{\text{Br}} \right); \frac{\Delta d}{d} \bigg|_{\text{Br}} = \delta; \quad (1)$$

d =Netzebenenabstand .

$$\delta = 4.47.10^{-6} \lambda^2 Z/V .$$
 (1*a*)

- Z = Zahl der Elektronen pro Elementarzelle;
- V = Volumen der Elementarzelle in Å³;
- $\lambda =$ Wellenlänge in Å.
- 2) Bei sehr grossen Teilchen mit $L \ge 1/\mu$, die von ebenen Flächen begrenzt sind, gibt zusätzlich dazu die Richtungsänderung der Wellennormalen beim Durchtritt durch die Teilchenoberflächen einen

A C 13 - 58